

#### **Two-Stage Nonlinear Compression of High Intensity Pulses**

Vladislav Ginzburg, Ivan Yakovlev, Alexandr Zuev, Anastasia Korobeynikova, Anton Kochetkov, Alexey Kuzmin, Sergey Mironov, Andrey Shaykin, Ilya Shaikin, <u>Efim Khazanov</u>

#### Institute of Applied physics of Russian Academy of Science

- Motivation
- Compression after Compressor Approach (CafCA)
- Small-scale self-focusing suppression in powerful laser beams
- Experimental results
- Conclusions

### New idea is wanted for the next jump



# **Compression after Compressor Approach**





**CPA + CafCA** 



 $I_{\rm a}$ ,  $I_{\rm g}$  and  $I_{\rm m}$  – breakdown threshold of the amplifiers, diffractions gratings and chirping mirrors.



- Motivation
- Compression after Compressor Approach (CafCA)
  - Small-scale self-focusing suppression in powerful laser beams
  - Experimental results
  - Conclusions



**Institute CafCA theory basics** 

$$\frac{\partial a}{\partial Z} - i \frac{D}{2} \frac{\partial^2 a}{\partial \eta} + i B |a|^2 a = 0$$
  

$$a = E(t,z)/E(0,0) : \text{ electric field}$$
  

$$Z = z/L : \text{ normalized distance}$$
  

$$\eta = (t - z/u)/\tau_{pu/se'} : \text{ normalized time}$$
  

$$\tau_{pu/se} : \text{ pulse duration}$$

**B=n<sub>2</sub>IkL=L/L**<sub>nonlinear</sub>

D=k<sub>2</sub>L(T<sub>pulse</sub>)<sup>2</sup>=L/L<sub>dispersion</sub><<1





# CafCA hystory from nJ to mJ

nJ Fisher, R.A., Kelley, P.L., and Gustajson, T.K., "Subpicosecond pulse generation using the optical Kerr effect "Applied Physics Letters 14(4), 140-143, 1969. idea

Laubereau, A., "External frequency modulation and compression of picosecond pulses," Physical Letters 29A(9), 539-540, 1969. liquid

Nakatsuka, H., Grischkowsky, D., and Balant, A.C., "Nonlinear Picosecond-Pulse Propagation- through Optical Fibers arith Positive Group Velocity Dispersion," Physical Review Letters 47(13), 910-913, 1981. fiber

Rolland, C. and Corkum, P.B., "Compression of high-power optical pulses," Journal of the Optical Society of America B 5(3), 641-647, 1988. focused beam

Nisoli, M., Silvestri, S.D., and Svelto, O., "Generation of high energy 10 fs pulses by a new pulse compression technique," Applied Physics Letters 68(20), 2793-2795, 1996.

hollow core fiber

mJ



### **CafCA hystory from nJ to J**





- Motivation
- Compression after Compressor Approach (CafCA)
- Small-scale self-focusing suppression in powerful laser beams
- Experimental results
- Conclusions





## **Beam self-filtering**

The technique of beam filtering depends on the intensity level

For ns laser beams intensities  $I \sim 1 \div 10 \text{GW/cm}^2$   $\theta_{\text{max}} = 0.73 \div 2 \text{ mrad}$ For fs laser beams intensities  $I \sim 1 \div 10 \text{TW/cm}^2$   $\theta_{\text{max}} = 20 \div 50 \text{ mrad}$ 



S. Mironov, V. Lozhkarev, G. Luchinin, A. Shaykin, and E. Khazanov, Applied Physics B, 113, 147-151 (2013).



- Motivation
- Compression after Compressor Approach (CafCA)
- Small-scale self-focusing suppression in powerful laser beams
- Experimental results
- Conclusions

Example 1: at the output of the PEARL front-end Ø 20mm, W=20mJ, T<sub>pulse</sub>=66fs -> 30fs, L<sub>plastic</sub>=3mm, B~2

Institute of Applied Physics



V. N. Ginzburg, A. A. Kochetkov, I. V. Yakovlev, S. Y. Mironov, A. A. Shaykin, E. A. Khazanov, Influence of the cubic spectral phase of high-power laser pulses on their self-phase modulation Quantum Electronics, 46, 106, 2016



**Fresh new results** 

#### <u>Ø 160mm, W=17J,</u> T<sub>pulse</sub>=70fs -> 14fs, L<sub>glass</sub>=3 mm, B~7.5



PRA, 101, 013829 2020

#### CafCA: two-stage





#### <u>Ø 160mm, W=17J,</u> T<sub>pulse</sub>=70fs -> 14fs, L<sub>glass</sub>=3 mm, B~7.5



Quantum Electronics, v.50, p.331–334 (2020)



Institute of Applied Physics Instead of conclusion CafCA is simple, robust and cheap recipe: just add free space, glass plate and chirp mirror(s)



# Thank you

The current research is supported under the EU project # 871072

